At the molecular level CPTs act by selectively inhibiting the rel

At the molecular level CPTs act by selectively inhibiting the religation step of hTopI catalysis by specifically binding the protein-DNA cleavage intermediate in a well-defined manner that highly depends on the presence of DNA [13�C15]. This leads to the accumulation of covalent cleavage intermediates in the genomic DNA, which by collision with DNA tracking processes such as the replication machinery causes DNA fragmentation and ultimately cell death [10]. Consequently, the cytotoxic effect of CPTs correlates directly with the intra-cellular activity level of hTopI and depends on active replication [10,16,17]. This explains the anti-cancer effect of the drugs, since most cancer cells are characterized both by an increased hTopI activity and increased replication rate relative to healthy cells.

Another factor determining the effectiveness of cancer treatment with CPTs may be the susceptibility of hTopI towards the drugs. Consistently, point-mutations in the gene expressing TopI that affect drug interaction to the cleavage complexes are well known causes of cellular resistance towards CPTs [10,18,19].Real-time measurement of the strand rotation step of hTopI catalysis has been achieved previously by the clever manipulation of single DNA molecules using magnetic tweezers [20,21]. However, to our knowledge a real-time sensor for measuring the DNA cleavage-religation steps of the catalysis, which presents the clinically most relevant activities of hTopI (CPT shifts the cleavage-religation equilibrium), has not been reported previously.

In the current manuscript we demonstrate optical real-time measurement of these activities of hTopI using a two oligonucleotide-composed hairpin shaped DNA sensor with a quencher-fluorophore pair. Upon reaction with hTopI the quencher and fluorophore becomes separated allowing detection of the light emitted from the fluorophore. This sensor design enabled quantitative measurement of hTopI DNA cleavage-ligation activity using a qPCR machine, which is standard in most research- and many clinical laboratories. Moreover, the sensor was demonstrated to be specific towards hTopI activity even when present in crude biological samples and was suitable for measuring the inhibition of hTopI by CPTs. Hence, in longer terms the presented sensor may provide Batimastat a relatively fast and easy mean for predicting the drug response of individual patients as well as it may prove valuable for fast high-throughput drug screening programs.

2.?Experimental Section2.1. Yeast Strains and Construction of hTopI Expression PlasmidsThe yeast Saccharomyces cerevisiae top1-null strain RS190 was a kind gift from R. Sternglanz (State University of New York, Stony Brook, NY, USA). Plasmid pHT143, for expression of recombinant full-length hTopI, was described previously [22].2.2. Expression and Purification of hTopI and Preparation of Cell ExtractsThe plasmid pHT143 was transformed into the S.

However, during their work on estimating ground subsidence from s

However, during their work on estimating ground subsidence from satellite data, Fujiwara et al. [26] and Shimada [27] noted that it was effectively quite difficult to differentiate the atmospheric delay phase due to water vapor from the phase due to changes in the Earth’s crust. The atmospheric delay itself is found to be a direct cause of remarkable observational error. For this reason, in order to increase the precision of change detection in the Earth’s crust, research on the effects of water vapor on microwaves, and their mitigation, is essential [5,27�C30].Changes in atmospheric water vapor are extremely complex, with 3-dimensional changes taking place not only in the vertical, but also in the horizontal directions [5,29,31].

It is extremely difficult to correct for the local effects of water vapor when local aerological data are not available [32]. The PSInSAR method attempts to handle this issues by temporal averaging of up to 30 SAR images [9]. Conventional researches with respect to the atmospheric impacts on InSAR mainly examine the effects of changes in atmospheric water vapor with altitude, limiting therefore the precision of this methodology in most of the past studies on atmospheric delay using InSAR techniques [33,34].There is therefore a great urge nowadays for quantitatively obtaining 3-dimensional spatial distributions of water vapor in order to estimate the atmospheric delay on InSAR data, as due to the changes in atmospheric water vapor contents. This is a very challenging issue, especially when one has to quantitatively assess these distributions and the related atmospheric impacts in order to use them with the JERS-1 SAR data.

We have to note here that these satellite data were observed from 1992.01.11 to 1998.10.12, a period when no archived upper-level meteorological data are available over Japan.In this study, using GIS as analytical platform, we aim at estimating the spatial variation and the temporal changes in ground subsidence over the Nobi Plain using Batimastat both ground level measurements data and InSAR data. However, notwithstanding the availability of weather charts and detailed information of ground surface atmospheric conditions (temperature, pressure, water vapor, wind, etc.

) over Japan during the JERS-1 period (1992�C1998), detailed information for upper atmospheric layers has been made available by the Japan Meteorological Agency only after 2002 with its multi-layer and multi-temporal Grid Point Value of Meso-Scale Model (GPV-MSM) data set (see Section 2.2 for details). We therefore propose to use the Analog Weather Chart (hereafter, AWC) method [35,36] in order to estimate from the analog GPV-MSM weather charts and datasets those water vapor inputs needed for calculating water vapor effects on the JERS-1 SAR interferometry data.

Recently, the SE method has been extensively used to investigate

Recently, the SE method has been extensively used to investigate the wave propagation problems for the purpose of damage detection in structures [36,37]. However, according to the authors’ best knowledge, the SE method has not been previously used for accurately modeling of the through-the-thickness electric potentials for piezoelectric bimorphs.For the purpose of accurately representing the mechanical displacement and the electric potential, a reasonable choice is to use the ESL model for the mechanical variables and the layer-wise theory or the sublayer theory for the electric variables. In the present work, we attempt to combine the merits of the SE method and the sublayer model. More specifically, the mechanical variables, i.e., the displacements, are described based on FSDT.

The electrical variables, i.e., the potentials, are described using the sublayer model. SE method is then utilized to deduce the governing equations. Legendre orthogonal polynomials are adopted in the interpolation function to improve the accuracy. To validate the effectiveness and the capability of the present model, numerical simulations for a simply supported piezoelectric bimorph with two different load cases, i.e., a uniform pressure load applied to the top surface and a uniform potential applied to the top and bottom surfaces, are carried out. The results obtained by the present approach are then compared to those coming from the coupled 3-D FE simulations using ABAQUS. The comparisons show the good accuracy and efficiency of SE method for modeling of the through-the-thickness electric potentials of the piezoelectric bimorph.

2.?Mathematical Formulation2.1. Constitutive Relationships, Displacement and StrainA piezoelectric Batimastat bimorph made of two identical PZT-4 piezoelectric layers, which has been investigated by Fernandes [1], is considered here. The PZT-4 layer is assumed to behave in a linear orthotropic manner with small displacements and strains. As depicted in Figure 1, both piezoelectric layers have the same thickness 0.5 h and are poled in the same direction. The x-y plane of the coordinate system x-y-z coincides with the middle plane of the bimorph, and the z axis is defined normal to the middle plane following the right-hand rule. This work aims to investigate the problem of a simply supported piezoelectric bimorph under a uniform pressure load or an applied electric potential in the framework of linear theory of piezoelectricity. Assuming the PZT-4 layers work under isothermal conditions, the pyroelectric effects and thermomechanical couplings are not taken into account.

The polymeric layers were deposited using the ESA layer-by-layer

The polymeric layers were deposited using the ESA layer-by-layer method [11]. In this work the materials involved were poly(diallyidimethyl) ammonium chloride (PDDA), PolyR-478, poly(allylamine) hydrochloride (PAH) and LUDOX? SM-30 SiO2-water colloid. In this case, the PAH and PDDA acted as polycations, and PolyR-478 and SM-30 were the anionic species. The number of overlays of PDDA/PolyR-478 was 14 layers and the number of PAH/SM30 overlays was 14 layers, which confer a total film thickness of less than 300 nanometers. Specifically, although the film thickness is difficult to measure due to the fibre geometry, in previous works it has been demonstrated that each PDDA/PolyR-478 and PAH/SM30 layers had thicknesses of approximately 12 nm and 7 nm, respectively [1, 7].

The thickness overlay is chosen to guarantee that the attenuation band is located where there is good sensitivity and where it does not vanish at the same time. In this work, the good sensitivity band corresponds to ~1,520 nm. In fact, the same effect noticeable when the ambient humidity increases, can be appreciated when the thickness of the coating is getting increased (see Figures 2a and 2b). If the sensor is located near the vanishing area (around 1,500 nm using this LPG), it would be more sensitive to any humidity change, but it would not be possible to detect any change once the peak vanished. On the other hand, if the sensor is placed near the minimum resonant peak, the humidity sensitivity would be almost negligible, because the resonant peak shift would be extremely slow, as experimentally demonstrated in [8].

A halfway decision is more convenient to work out both design features. It is important to stop the building process of the sensitive layer at a point halfway between the minimum value and the value where the resonant peak vanishes. So, there must be a trade-off between sensor sensitivity (far from the minimum because the blue shift dependence is higher) and sensor maximum wavelength displacement detection range. Using the intermediate layer, the wavelength working point can Batimastat be easily located in a more favorable value.Figure 2.a) LPG spectra before and after deposition of PAH/SM30 (only sensitive layer), b) LPG spectra before and after deposition of PDDA/PolyR-478 + PAH/SM30 (with the intermediate layer).In Figure 3 the experimental setup used to do the humidity tests is shown.

The LPG was placed inside a climatic chamber, with temperature and humidity control, and was illuminated using a broad
Gas sensing has become increasingly important as environmental awareness and industrial processes impose greater demands on measurement and monitoring systems [1, 2]. Spectroscopy-based techniques are well suited for monitoring gases as most of them have a characteristic absorption spectrum.