CrossRef 14. Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA: Titania nanotubes: a novel platform for drug-eluting coatings for medical implants. Small 2007, 3:1878–1881.CrossRef 15. Das K, Bose S, Bandyopadhyay A, Karandikar B, Gibbins BL: Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants. J Biomed Mater Res B 2008, 87:455–460. 16. Chun AL, Vactosertib ic50 Moralez JG, Webster TJ, Fenniri H: Helical rosette nanotubes: a biomimetic coating for orthopedics. Biomaterials 2005, 26:7304–7309.CrossRef 17. Popat KC, Leoni L, Grimes CA, Desai TA: Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 2007, 28:3188–3197.CrossRef 18.
Bauer S, Park J, von der Mark K, Schmuki P: Improved attachment of mesenchymal stem cells on super-hydrophobic TiO 2 nanotubes. Acta Biomater 2008, 4:1576–1582.CrossRef 19. Park J, Bauer S, von der Mark K, Schmuki P: Nanosize and vitality: TiO 2 nanotube diameter directs cell fate.
Nano Lett 2007, 7:1686–1691.CrossRef 20. Bauer S, Park J, Faltenbacher J, Berger S, von der Mark K, Schmuki P: Size selective behavior of mesenchymal stem cells on ZrO 2 and TiO 2 nanotube array. Integr Biol 2009, 1:525–532.CrossRef 21. McCool B, Tripp CP: Inaccessible hydroxyl groups on silica are accessible in supercritical CO 2 . J Phys Chem B 2005, 109:8914–8919.CrossRef 22. Tsai PJ, Yang CH, Hsu WC, Tsai WT, Chang PLX-4720 JK: Enhancing hydrogen storage on carbon nanotubes via hybrid chemical etching and Pt decoration employing supercritical carbon dioxide fluid. Int J Hydrogen Energ 2012, 37:6714–6720.CrossRef 23. Reverchon E, Porta GD, Adami R: Medical device sterilization using
supercritical CO 2 based mixtures. Recent Pat Chem Eng 2010, 3:000–000.CrossRef 24. Gu W, Tripp CP: Reaction of silanes in supercritical CO 2 with Liothyronine Sodium TiO 2 and Al 2 O 3 . Langmuir 2006, 22:5748–5752.CrossRef 25. Zhu K, Vinzant TB, Neale NR, Frank AJ: Removing structural disorder from oriented TiO 2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Lett 2007, 7:3739–3746.CrossRef 26. Su Z, Zhou W: Formation mechanism of porous anodic aluminium and titanium oxides. Adv Mater 2008, 20:1–5.CrossRef 27. Wang D, Liu Y, Yu B, Zhou F, Liu W: TiO 2 nanotubes with tunable morphology, diameter, and length: synthesis and photo-electrical/catalytic performance. Chem Mater 2009, 21:1198–1206.CrossRef 28. Lai CW, Sreekantan S: Photoelectrochemical performance of smooth TiO 2 nanotube arrays: effect of anodization temperature and cleaning methods. Int J Photoenergy 2012, 2012:356943–1-356943–11.CrossRef 29. Webb K, Hlady V, Tresco PA: Relative importance of surface wettability and charged functional groups on NIH 3 T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res 1998, 41:422–430.CrossRef 30. Das K, Bose S, Bandyopadhyay A: Surface modifications and cell-materials interactions with anodized Ti.