The ITS has also recently been suggested for use as a suitable ma

The ITS has also recently been suggested for use as a suitable marker for fungal barcode recognition of species (Seifert, 2009). There are two common approaches to sequence PCR products – direct sequencing and sequencing after cloning (Gyllensten, 1989; Rao, 1994). Direct

sequencing of PCR products is likely to represent DNA that is accurately replicated (Gyllensten & Erlich, 1988). Also, it is a quicker and less expensive MK-1775 in vitro option than sequencing after cloning multiple copies of the product. However, it is not always the most successful method. Many studies have failed in direct sequencing of partial ITS PCR products for reasons other than DNA contamination (Vollmer & Palumbi, 2004; Mondiet et al., 2007; Lindner & Banik, 2009). Sequencing after cloning of PCR products is now a widely used

method. Misincorporation by Taq DNA polymerase can give rise to individual clones SB431542 with varying sequences (Tindall & Kunkel, 1988), and the PCR error rate may be higher than 10% (Kobayashi et al., 1999). At least three clones of each PCR product were sequenced to obtain a consensus sequence. Sequencing after cloning is expensive, time-consuming, and labor-intensive for larger scale studies. In our previous study, we obtained a success rate of about 50% with direct sequencing of PCR products of the ITS in 300 wild Pleurotus nebrodensis isolations. As a dikaryon, P. nebrodensis contains two genetically distinct nuclei. We suspected that there were differences in ITS in the two nuclei. Here, we sequenced amplified regions of the ITS of protoplast-derived monokaryons and clones of PCR products derived from dikaryons of P. nebrodensis. Two

dikaryotic Casein kinase 1 isolates of P. nebrodensis (00489 and 00491) from the China Center for Mushroom Spawn Standards and Control (CCMSSC) and their two protoplast-derived monokaryons, respectively, were used in this study (Table 1). All strains were maintained on potato dextrose agar (PDA) slants at 4 °C. All strains were cultured (7 days at 26 °C) on sterilized cellophane overlaid on PDA contained in Petri dishes. Mycelia were collected and suspended in lytic enzyme solution containing 1.5% lytic enzyme (Guangdong Institute of Microbiology, China), 0.6 mol L−1 mannitol, and incubated at 32 °C for 4 h. A 1-mL aliquot of lytic enzyme solution was used for each 100 mg of fresh mycelium. After incubation, the suspension was filtered through a syringe (50 mL) packed with 4-mm-thick cotton to remove mycelial debris. The filtrate was centrifuged at 800 g for 10 min at 4 °C and the supernatant discarded. Residues were dissolved with 1 mL 0.6 mol L−1 mannitol. The number of protoplasts in the filtrate was counted using a hemocytometer. A protoplast suspension (0.1 mL) containing 100–200 protoplasts was spread on regeneration medium (0.6 mol L−1 mannitol, 1.5% maltose, 1% glucose, 0.5% yeast extract, and 1.5% agar) contained in Petri dishes. Incubation was carried out at 25 °C.

, 2005) Indeed, biochemical evidence was obtained that KdpE unde

, 2005). Indeed, biochemical evidence was obtained that KdpE undergoes a monomer-to-dimer transition upon phosphorylation (Lucassen, 1998). Histidine kinase/response regulator systems are often referred to as ‘two-component systems’ based on the assumption that they consist of only two components. Meanwhile, many systems are known that include accessory proteins responsible for stimulus perception, fine-tuning, cross-talk, or signal integration (Island & Kadner, 1993; Kato & Groisman, 2004; Eguchi et al., 2007; Fleischer et al., 2007; Paul et al., 2008). Accessory

proteins were also identified for NVP-AUY922 price the KdpD/KdpE system. The universal stress protein UspC was identified as a scaffolding protein of the KdpD/KdpE signaling cascade by interacting with the Usp domain in KdpD under salt stress (Fig. 2b) (Heermann et al., 2009b). Usp proteins are small soluble proteins that accumulate under diverse stress conditions. They are widespread in living organisms, but their physiological role is poorly understood (Kvint et al., 2003). Scaffolding

proteins are usually known from eukaryotes. These proteins connect proteins and enhance the binding properties in a signaling pathway and thus influence signal transduction (Pawson & Scott, 1997; Garrington & Johnson, 1999; Burack & Shaw, 2000). Under K+-limiting conditions, the Kdp system restores the intracellular K+ concentration, while in response to salt stress, K+ is accumulated far above the normal content find more by rapid uptake via Trk. Nevertheless, the Kdp system is induced under salt stress. Because the kinase activity of KdpD is inhibited at high concentrations of K+ (Jung et al., 2000), it has been puzzling how the sensor can be activated in response to salt stress. KdpD has a Usp domain within the N-terminal input domain belonging to the UspA subfamily, and it was hypothesized that KdpD might interact with one or more UspA-subfamily proteins (Heermann et al., 2009b). Escherichia coli encodes Thymidine kinase three single domain proteins of this subfamily, UspA, UspC, and UspD, and the expression of the corresponding

genes is upregulated under various stress conditions including salt stress (Gustavsson et al., 2002). Among these proteins, only UspC stimulated the in vitro reconstructed signaling cascade (KdpDKdpEDNA), resulting in phosphorylation of KdpE at a K+ concentration that would otherwise almost prevent phosphorylation. In agreement, in a ΔuspC mutant, KdpFABC production was significantly downregulated when cells were exposed to salt stress, but unaffected under K+ limitation. Biochemical studies revealed that UspC specifically interacts with the Usp domain in the stimulus-perceiving N-terminal domain of KdpD. UspC does not influence the enzymatic activities of KdpD, but stabilizes the KdpD/phospho-KdpE/DNA complex. Therefore, UspC can be regarded as one of the rare examples of bacterial scaffolding proteins (Heermann et al., 2009b).

6xHIS and Δcox15 with ScCOX156xHIS, as positive controls Using

6xHIS and Δcox15 with ScCOX15.6xHIS, as positive controls. Using two different expression vectors (see Materials and methods), the same phenotype suppression was observed, demonstrating that T. cruzi sequences are able to complement yeast respiratory deficiencies. To confirm these results, the oxygen consumption of WT, Δcox10, Δcox15 yeast strains and their corresponding transformants was measured (Fig. 2b). As expected, the knockout cells were impaired in O2 consumption due to their inability to produce heme A and consequently fully active CcO. The respiratory function was restored selleck chemicals with the expression of the corresponding T. cruzi COX10 and COX15

genes, as well as with the S. cerevisiae COX10 and COX15 genes. Taken together, these results demonstrate that TcCOX10 and TcCOX15 encode HOS and HAS enzymes that are functional in the yeast model. In order to verify the function of these proteins in heme A biosynthesis, the mitochondrial heme level was evaluated by differential absorption spectroscopy as described previously (Tzagoloff et al., 1975). The reduced minus oxidized spectra of mitochondrial cytochromes were recorded and are presented in Fig. 3a. The spectra of the knockout

cells only exhibited signals corresponding to heme b and heme c, and the heme a signal was absent, confirming the deficiency of its biosynthesis (Nobrega et al., 1990; Glerum et al., 1997). The spectrum recorded from the mitochondria of WT cells displayed bands corresponding to heme a, heme b

and heme c. The expression of TcCOX10 in Δcox10 and TcCOX15 in Δcox15 allowed the recovery of the heme a signal, reflecting the role in heme A synthesis of the TcCox10 and TcCox15 proteins NVP-BGJ398 datasheet as HOS and HAS enzymes, respectively. The protein levels of Cox10 and Cox15 were evaluated using Western blot analysis of yeast mitochondria. All these proteins (from S. cerevisiae and T. cruzi) were expressed as C-terminal his-tag fusion proteins (Fig. 3b). As expected, the proteins were detectable in the cells transformed with the plasmids expressing TcCOX10.6xHIS, GBA3 ScCOX10.6xHIS, TcCOX15.6xHIS and/or ScCOX15.6xHIS, and they were not detectable in the WT, Δcox10 or Δcox15 cells transformed with control vectors. The signals detected at around 38–45 kDa were consistent with the apparent molecular weight expected for TcCox10 and TcCox15 proteins based on their primary sequences (for TcCox10 388 aa, 42 kDa and for TcCox15 396 aa, 44 kDa, both molecular weights were estimated for the preprotein without the C-terminal tag, TriTrypDB, http://tritrypdb.org/tritrypdb/). In both cases, the band intensity of the T. cruzi proteins was always lower compared with the S. cerevisiae ones. Several factors could be involved in this observation: (1) the different mitochondrial targeting sequence [shorter in trypanosomatids (Hausler et al., 1997)] resulted in less efficient mitochondrial importation; (2) the lower stability of the T. cruzi proteins compared with the S.

The average annual number of organized trips from Finland abroad

The average annual number of organized trips from Finland abroad during 1999 to 2007 was around 940,000 (Figure 2). There was a sudden drop in the numbers during 2001 to 2003, down to 880,000 trips per year. A concomitant drop was seen in the number of malaria cases. During 1997 to 2008 the total number of overnight leisure trips abroad nearly doubled, from 1.7 million in 1998 to 3.3 million in 2008. The increasing trend

observed with overnight leisure trips was also seen in travel to malaria-endemic countries, including high-risk areas (Figure 3). Antimalarial drug sales decreased nearly 50%, from 49,000 units in 1997 to 25,000 in 2005, but since 2005 a new increase was observed, and in 2007 the number of units sold was roughly 61,000. The same trend was observed Selleckchem Tofacitinib Selleck PD-1 inhibitor for sales expressed in daily treatment doses (DDD) for different antimalarials

(Figure 4). Antimalarial drug sales were highest during the first (35%) and last quarters (18%) of the years and followed the same seasonal pattern as traveling (Figure 5). Malaria cases occurred year-round with an increasing trend toward the end of the year (data not shown). This nationwide population-based study showed that even though traveling to malaria-endemic areas increased during the 14-year period, no corresponding increase in malaria cases occurred. Moreover, during the same period, the overall antimalarial drug sales decreased, while a slight increase was 2-hydroxyphytanoyl-CoA lyase observed with the last available data. The increase in travels to endemic areas with no concomitant increase in drug sales suggests that travel advice was not reaching all groups of travelers. It appears that this concerns especially immigrants visiting friends and relatives (VFR) in their former home country and travelers on self-organized trips, because a significant proportion of travelers with malaria in Finland were observed in these groups. During the study period, nearly 500 malaria cases (average annual incidence 0.7/100,000 population) were

reported in Finland. All cases were imported; no autochthonous cases have been found in Finland since the 1950s.11 Malaria is a notifiable disease in most of the European countries, but underreporting exists; in some European countries, underreporting of imported malaria cases is estimated to be as high as 60%,12 whereas the estimate for Finland is around 20%.13 We believe, however, that in reality, there is no significant underreporting in Finland. The reference laboratory collects additional information from clinicians, and these two databases have been compared annually; the same individual cases have been identified in both (H. Siikamäki, unpublished results). Data from annual surveys showed a linear increase in the total number of leisure trips abroad since 1997.

glumae It is anticipated that the identification of these first

glumae. It is anticipated that the identification of these first molecular components will expedite the discovery of additional genes and begin to provide us with a better understanding selleck chemicals llc of the regulatory mechanisms controlling oxalate biosynthesis in bacteria and other organisms. It is our hope that this knowledge will prove useful, in the future, to design new strategies to combat oxalic acid-secreting

phytopathogens and in the development of desirable fermentative processes for the production of this useful industrial acid. The contents of this publication do not necessarily reflect the views or policies of the US Department of Agriculture, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

This research was supported in part by the US Department of Agriculture, Agricultural Research Service, under Cooperative agreement number 58-6250-6-001. Thanks are due to Keri Wang for providing the pRK415 vector and Michele McConn, John Knight, and Ross Holmes for their comments on the manuscript. “
“LowGC-type plasmids conferring resistance to sulfonamides have Paclitaxel chemical structure been frequently isolated from manure and manured soil. However, knowledge on the dynamics of plasmid-carrying populations in soil and their response to the presence of sulfonamides is scarce. Here, we investigated effects of the sulfonamide resistance conferring plasmid pHHV216 on the

fitness of Acinetobacter baylyi BD413 in soil after application of manure with or without the sulfonamide antibiotic sulfadiazine (SDZ). The persistence of A. baylyi BD413 pHHV216 in competition to its plasmid-free variant was followed in soil microcosms. CFU counts showed a decrease in A. baylyi BD413 in manured soils over the experimental period of 32 days by about 0.5 log units. The proportion of the plasmid-carrying populations decreased from 50 to < 40% in PTK6 the absence of SDZ, while the proportion of plasmid-carrying BD413 increased from 50 to about 65% with SDZ added. The data suggest that SDZ introduced via manure into soil was bioaccessible, providing a fitness advantage for the plasmid-carrying population of BD413 in soil, while the plasmid conferred a fitness disadvantage when selective pressure by SDZ was absent. In future, this method may be used as a tool for the assessment of bioavailability of antibiotics in soil. “
“It has been frequently reported that seasonal changes in toxin production by cyanobacteria are due to changes in the proportion of toxic/nontoxic genotypes in parallel to increases or decreases in population density during the seasonal cycle of bloom formation. In order to find out whether there is a relationship between the proportion of genes encoding toxic peptide synthesis and population density of Planktothrix spp.

tuberosum (Table 2) The isolates

within this last subcla

tuberosum (Table 2). The isolates

within this last subclade formed two distinct groups (C1 and C2), which are highly supported by PP (0.92–1.00) and BS (52–92), respectively. The group C1 included sea turtle isolates and C2 included S. tuberosum isolates (Fig. 4). Most of the nongrouped isolates of subclade C were obtained from different infections of animals (Fig. 4). Eggs exposed to inoculum had a mortality rate of 83.3% (10 out of 12). Symptoms of fungal infection on the eggs resembled those observed in the field and were first seen 6 days after inoculation. Infected areas were characterized by a yellow, bluish color. The size of the infected area increased during incubation and eventually turned into a large necrotic lesion that resulted in the death of VX 770 the embryos and hatching failure. Fungi were isolated from infected areas and dead embryos, and their morphological study and molecular analysis revealed that all isolates were identical to the original strain used for inoculation. In control eggs, mortality rate was <8.3% (1 out of 12). These mortality rates were statistically significantly different (Fisher exact two-tailed,

P=0.03). From control eggs shells, isolation attempts did not yield any fungus. In this work, we demonstrate that a number of isolates of F. solani are responsible for embryonic mortality in the nesting areas of the sea turtle C. caretta in Boavista, Cape Verde. Although this fungal species has been ICG-001 in vivo described previously in association with different infections in animals,

including sea turtles (Rebell, 1981; Cabañes old et al., 1997), its role as a pathogen and its relationship with hatching success has never been investigated until the present study. The fungal isolates involved in the infection of C. caretta eggs in Boavista have been characterized morphologically and molecularly. Although the isolates were morphologically indistinguishable, their ITS sequences fell into two different subclades within F. solani clade III (A and C). In subclade A, some of the isolates were obtained from animals (5 out of 12) including two from sea turtles and the rest from plants (7 out of 12). In contrast, subclade C contained the majority of the animal isolates (24 out of 34), including those from sea turtles. Thus, there seems to be some animal host specificity in subclade C as it happens in other fungal groups (Berbee, 2001) and fungal-like organisms (Diéguez-Uribeondo et al., 2009). Despite this, further studies are needed to demonstrate possible host specificity. Inoculation challenge experiments with a representative sea turtle infecting F. solani isolate from subclade C indicate that they are pathogenic to C. caretta eggs, because the inoculations met Koch postulates; i.e., the F.

tuberosum (Table 2) The isolates

within this last subcla

tuberosum (Table 2). The isolates

within this last subclade formed two distinct groups (C1 and C2), which are highly supported by PP (0.92–1.00) and BS (52–92), respectively. The group C1 included sea turtle isolates and C2 included S. tuberosum isolates (Fig. 4). Most of the nongrouped isolates of subclade C were obtained from different infections of animals (Fig. 4). Eggs exposed to inoculum had a mortality rate of 83.3% (10 out of 12). Symptoms of fungal infection on the eggs resembled those observed in the field and were first seen 6 days after inoculation. Infected areas were characterized by a yellow, bluish color. The size of the infected area increased during incubation and eventually turned into a large necrotic lesion that resulted in the death of Epigenetics Compound Library datasheet the embryos and hatching failure. Fungi were isolated from infected areas and dead embryos, and their morphological study and molecular analysis revealed that all isolates were identical to the original strain used for inoculation. In control eggs, mortality rate was <8.3% (1 out of 12). These mortality rates were statistically significantly different (Fisher exact two-tailed,

P=0.03). From control eggs shells, isolation attempts did not yield any fungus. In this work, we demonstrate that a number of isolates of F. solani are responsible for embryonic mortality in the nesting areas of the sea turtle C. caretta in Boavista, Cape Verde. Although this fungal species has been AZD1208 cost described previously in association with different infections in animals,

including sea turtles (Rebell, 1981; Cabañes Quinapyramine et al., 1997), its role as a pathogen and its relationship with hatching success has never been investigated until the present study. The fungal isolates involved in the infection of C. caretta eggs in Boavista have been characterized morphologically and molecularly. Although the isolates were morphologically indistinguishable, their ITS sequences fell into two different subclades within F. solani clade III (A and C). In subclade A, some of the isolates were obtained from animals (5 out of 12) including two from sea turtles and the rest from plants (7 out of 12). In contrast, subclade C contained the majority of the animal isolates (24 out of 34), including those from sea turtles. Thus, there seems to be some animal host specificity in subclade C as it happens in other fungal groups (Berbee, 2001) and fungal-like organisms (Diéguez-Uribeondo et al., 2009). Despite this, further studies are needed to demonstrate possible host specificity. Inoculation challenge experiments with a representative sea turtle infecting F. solani isolate from subclade C indicate that they are pathogenic to C. caretta eggs, because the inoculations met Koch postulates; i.e., the F.

1c) (Abram & Davis, 1970) In contrast to control strains, the su

1c) (Abram & Davis, 1970). In contrast to control strains, the surfaces of the ccrp∷Kn strain are severely creased and turned inwards, creating deep indentations at both poles in 29% of the cells (n=191), a feature not seen either by light microscopy or by cryoelectron microscopy (Fig. 1c). That this denting and deformation did not have an effect on cell viability was shown by the wild-type predatory rates of the ccrp∷Kn strain (measured by microscopic observation of the rates of E. coli selleckchem prey bdelloplast formation and lysis and by the rate of OD600 nm decline of prey E. coli cells), its long-term survival at

levels comparable to the wild type in buffer alone and its short-term survival during treatment with up to 0.1% glycerol, which was used to try to provide an osmotic challenge to the cells in case their response was altered (data not shown). The cell deformations described here are consistent with the work published on the IF-like protein FilP in S. coelicolor, which shows that CCRP proteins can act as an underlying protein scaffold contributing to cell rigidity, previously thought to be a function of the cell wall and turgor pressure (Bagchi, 2008). Interestingly, the homology between Ccrp and FilP, mentioned in Identification of an IF-like protein in

B. bacteriovorus, Selleck Rucaparib although weak, does include a conserved AQVD motif seen in FilP at amino acids 19–22 and in B. bacteriovorus Ccrp at amino acids 33–36. This motif, along with other extra amino acids, is shared

by FilP family proteins, but not crescentin (Bagchi, 2008). Thus, Ccrp from B. bacteriovorus may have a more FilP-like nature than a crescentin-like nature. We showed previously that tagging of cellular proteins with a bright, monomeric, fluorescent protein, mTFP, in B. bacteriovorus next could be used to determine cellular address and function (Fenton et al., 2010; Ai, 2006). A C-terminal ccrp–mtfp fusion was cloned and recombined, on several separate occasions, into the B. bacteriovorus genome using the methods described previously (Fenton et al., 2010). In contrast to reports on crescentin in C. crescentus, the Ccrp–mTFP fusion protein appeared to be fully functional, as the crushing and denting phenotypes revealed under negative staining of ccrp-deletion strains were never observed (data not shown) (Ausmees et al., 2003). The fluorescent Ccrp–mTFP signal in attack-phase B. bacteriovorus cells was generally evenly distributed, but showed a bias towards the cell poles (Fig. 1d). In only some cells could fainter more peripherally located thread-like, fluorescent regions be observed (Fig. 1d, A and B). Partitioning of the signal could be observed in some cells where there was a clear fluorescent signal bias to either pole (Fig. 1d, C).

It has previously been shown that orsA (AN7909) is involved in th

It has previously been shown that orsA (AN7909) is involved in the formation of orsellinic acid (2), lecanoric acid (15), the two colored compounds F-9775A (16) and F-9775B (17), orcinol, diorcinol, gerfeldin and deoxy-gerfeldin. (Schroeckh et al., 2009; Sanchez et al., 2010). Our analysis confirms the link between orsellinic acid, lecanoric acid, diorcinol, F-9775A, F-9775B to orsA as these compounds are missing in the orsAΔ strain. However, we have not been able to detect the gerfeldins in any of our strains, and apparently our conditions favor violaceol and not gerfeldin

formation. The violaceols are formed by dimerization of two C7 monomers of 5-methylbenzene-1,2,3-triol, a compound that we could tentatively detect as [M-H]− at m/z 139 in cultivation MI-503 mouse extracts. The C7 backbone of 5-methylbenzene-1,2,3-triol, check details may conceivably be formed by decarboxylation of a C8 aldol intermediate as suggested by Turner 40 years ago (Turner, 1971) (Fig. 5). This C8 intermediate also serves as a branch point towards orsellinic acid. Interestingly, the same compounds that disappear in the orsAΔ strain also disappear in AN7903Δ, a strain missing a PKS gene separated from orsA by only ∼20 kb (Fig. 4). This result does not contradict the original assignment of orsA as the PKS gene responsible for production of orsellinic acid. Although the enzymes encoded by the two genes are predicted

to share many of the same functional domains, AN7903 is larger by around 500 amino acid residues and contains a methyl-transferase domain, which is not required for orsellinic acid production. Moreover, we note that Schroeckh et al. (2009) observed that both AN7903 and orsA were upregulated when orsellinic acid was induced by co-cultivation with Streptomyces hygroscopicus,

indicating cross-talk between the two clusters. Surprisingly, what appear to be trace amounts of orsellinic acid can be detected as m/z 167 [M-H]− in both the AN7903Δ and the orsAΔ strains (Fig. 4). The source of this residual orsellinic acid remains elusive, but it could possibly stem Interleukin-3 receptor from unmethylated byproducts from the PKS, AN8383, that produces 3,5-dimethylorsellinic acid, see below. Interestingly, production of austinol (18) and dehydroaustinol (19) was observed in the reference strain on several media (Fig. 1). Despite the fact that the production of these compounds is known from A. nidulans (Szewczyk et al., 2008), they have not yet been assigned to a specific gene. Only the AN8383Δ strain failed to produce the two austinols on all the media, which triggered austinol production in the reference strain (Fig. 6a). This, phenotype could be rescued by inserting the structural gene of AN8383 under the control of the gdpA promoter into an ectopic locus, IS1 (Hansen et al., 2011) (Fig. 6a). Moreover, a point mutant strain AN8383-S1660A also failed to produce austinols on these six media (Fig. 6a).

It has previously been shown that orsA (AN7909) is involved in th

It has previously been shown that orsA (AN7909) is involved in the formation of orsellinic acid (2), lecanoric acid (15), the two colored compounds F-9775A (16) and F-9775B (17), orcinol, diorcinol, gerfeldin and deoxy-gerfeldin. (Schroeckh et al., 2009; Sanchez et al., 2010). Our analysis confirms the link between orsellinic acid, lecanoric acid, diorcinol, F-9775A, F-9775B to orsA as these compounds are missing in the orsAΔ strain. However, we have not been able to detect the gerfeldins in any of our strains, and apparently our conditions favor violaceol and not gerfeldin

formation. The violaceols are formed by dimerization of two C7 monomers of 5-methylbenzene-1,2,3-triol, a compound that we could tentatively detect as [M-H]− at m/z 139 in cultivation find more extracts. The C7 backbone of 5-methylbenzene-1,2,3-triol, Alectinib manufacturer may conceivably be formed by decarboxylation of a C8 aldol intermediate as suggested by Turner 40 years ago (Turner, 1971) (Fig. 5). This C8 intermediate also serves as a branch point towards orsellinic acid. Interestingly, the same compounds that disappear in the orsAΔ strain also disappear in AN7903Δ, a strain missing a PKS gene separated from orsA by only ∼20 kb (Fig. 4). This result does not contradict the original assignment of orsA as the PKS gene responsible for production of orsellinic acid. Although the enzymes encoded by the two genes are predicted

to share many of the same functional domains, AN7903 is larger by around 500 amino acid residues and contains a methyl-transferase domain, which is not required for orsellinic acid production. Moreover, we note that Schroeckh et al. (2009) observed that both AN7903 and orsA were upregulated when orsellinic acid was induced by co-cultivation with Streptomyces hygroscopicus,

indicating cross-talk between the two clusters. Surprisingly, what appear to be trace amounts of orsellinic acid can be detected as m/z 167 [M-H]− in both the AN7903Δ and the orsAΔ strains (Fig. 4). The source of this residual orsellinic acid remains elusive, but it could possibly stem C59 from unmethylated byproducts from the PKS, AN8383, that produces 3,5-dimethylorsellinic acid, see below. Interestingly, production of austinol (18) and dehydroaustinol (19) was observed in the reference strain on several media (Fig. 1). Despite the fact that the production of these compounds is known from A. nidulans (Szewczyk et al., 2008), they have not yet been assigned to a specific gene. Only the AN8383Δ strain failed to produce the two austinols on all the media, which triggered austinol production in the reference strain (Fig. 6a). This, phenotype could be rescued by inserting the structural gene of AN8383 under the control of the gdpA promoter into an ectopic locus, IS1 (Hansen et al., 2011) (Fig. 6a). Moreover, a point mutant strain AN8383-S1660A also failed to produce austinols on these six media (Fig. 6a).