The system was furnished with three axi-symmetric full cone spray

The system was furnished with three axi-symmetric full cone spray nozzles FC-2, FC-3, and FC-3.5 from RELAB having different orifice and free passage diameters selleck compound as expressed in Table 1. These nozzles were equipped with a special X-shaped vane fixed at the nozzle inlet to impart the swirl and rotational speed to produce a full cone spray pattern. The spray pulse on-off duty cycle was controlled by a system composed of a PROVAL pneumatic double actuated solenoid valve and a programmable digital time relay (SIGMA, PTC-15). In these studies, the valve duty cycle was kept constant at 1 s. In order to maintain a desired temperature within the feed tank and spray feed line to spray point, the liquid immersion heater and heat tracing cable were used, and corresponding water temperature was monitored using thermostatic controllers.

In this experiment, the service temperature was elevated from 20 to 100��C in order to lower the required load pressure, viscosity, and surface tension. In order to avoid the thermal losses, the heat tracing cable was insulated with ceramic tape. In addition to temperature, the service pressure of the system was being elevated in range of 0.5�C1.5bar. For this purpose, a liquid delivery pump capable of withstanding at high temperature values was used to serve the spray nozzle at its required spraying pressure. A stainless steel mesh strainer hampering any possible tiny debris from the liquid flow was also fixed at the feed tank outlet [2, 6]. The liquid pressure at three different localized points in main supply line was monitored using spring type pressure gauges.

Figure 1Schematic of the experimental setup used for generation and characterization of water spray.Table 1Specifications of full cone spray nozzles.2.2. Characterization ToolsIn order to characterize the sprays of the tested liquid, the input parameters like heating temperature, load pressure, and liquid flow rate were varied in steps; the corresponding spray parameters including the axial spray tip penetration, jet breakup mechanism, droplet size distribution, nozzle discharge coefficient, spray cone angle, spray width, Weber number, Reynolds number, and vortex clouds formation were investigated using nonintrusive imaging and nonimaging tools like high speed camera and PDA. The visualization system used in this experiment was composed of a high speed digital camera and spray chamber side illumination arrangements. The transparent spray chamber was illuminated from all sides using 9 spotlights of 300 Watts each, and the spray jet movements were visualized using a Phantom v9.1 digital camera. This 14 bit-2 megapixels high speed camera Dacomitinib suites well the larger field of view applications.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>