The authors found a significant increase in the expression of a microRNA cluster (hsa-miR-371-373) in the cisplatin resistant situation, which triggeres p53 silencing [21]. Thus, a future perspective in the field of cisplatin resistance research might be to investigate microRNAs. Thiol-containing proteins and Cisplatin resistance Among various mechanisms of platinum resistance, thiol-containing proteins are of special interest. Momelotinib Platinum-based complexes are the only heavy metal containing EMA- and FDA-approved cytostatics at present. This leads to a
very uncommon possible mechanism of resistance: direct interaction of Cisplatin with thiol-groups forming a virtually insoluble sulphide. Since, this mechanism of action in resistance formation is exclusive to platinum-based compounds, it is referred to in this article with a special chapter. Glutathione
or metallothioneins are cysteine-rich peptides, capable of detoxicating the highly reactive aquo-complexes. Cisplatin resistance in ovarian cancer was reported directly proportional to increased intracellular glutathione [22]. However, increased glutathione levels are reversible but resistance is not. Upstream of gluthatione are further thiol-containing proteins called thioredoxins. Mammalian thioredoxins are a family of 10-12 kDa proteins characterized by a common active site: Trp-Cys-Gly-Pro-Cys. https://www.selleckchem.com/products/Fedratinib-SAR302503-TG101348.html Thioredoxin-1 (TRX) is a 12 kDA ubiquitous protein of 104 amino acids with disulfide reducing activity [23]. TRX is frequently found in the cytoplasm, but was also identified in the nucleus of benign endometrial stromal cells, tumour derived cell lines, and primary tumours [24]. Its active site comprises two cystein residues in the consensus sequence serving as a general disulfide oxido-reductase. These two cystein residues (Cys-32, Cys-35) can reversably be oxidized to form a disulfide bond and GPX6 be reduced by TRX reductase and NADPH
[25]. The TRX system comprises TRX reductase, NADPH, and TRX itself. It is conserved throughout evolution from procaryotes to higher eucaryotes. The TRX system and the glutathione system constitute important thiol reducing systems [26]. TRX originally was identified as a hydrogen donor of ribonucleotide reductase in Escherichia coli [27]. Targeted disruption of the TRX gene in Saccharomyces cervisiae prolonged the cell cycle [28]. The TRX homologue gene of Drosophila melanogaster was identified as pivotal for female meiosis and early embryonic development [29]. The reducing nuclear environment, caused by thioredoxin, is preferable for the DNA binding activity of various transcription factors such as AP-1 [30], NF-κB [31], and the estrogen receptor [32]. AP-1 activation by TRX also occurs through an indirect mechanism: TRX reduces Ref-1, which in turn reduces cysteine residues within the fos and jun subunits of AP-1, thereby promoting DNA binding [30].