p.i.. The colour bar indicates photon emission with 4 min integration time in photons/s/cm2/sr. Uninfected Ifnb1 tm2.2Lien reporter mice are shown as controls at the top in (B). (C) Quantification of firefly luciferase light signals presented in (B) in Lmo-EGDe-lux (grey columns) and Lmo-InlA-mur-lux (black columns) infected IFN-β-reporter mice by measuring luminescence PD0325901 purchase intensity in an identical selected region in each animal as indicated on the left. Data represent means ± SEM. Bacterial
luciferase photon emission was subtracted from firefly BLI signals to generate the graph shown in (C). One out of two representative experiments is shown (A-C). Oral infection challenge with ‘murinised’ Listeria does not result in increased neuroinvasion into the brain L. monocytogenes can induce meningitis, meningoencephalitis, and rhombenencephalitis in infected humans and animals [33]. It is currently not well understood which virulence factors of L. monocytogenes control the invasion of the pathogen into the central nervous system (CNS). InlA- and InlB-dependent uptake mechanisms have been suggested for direct invasion of L. monocytogenes into brain microvascular endothelial
cells and choroid plexus epithelial cells [34, 35]. Our BMS-354825 cost murinised Listeria infection model is permissive for InlA- and InlB-mediated invasion mechanisms and allows investigation of the role of InlA-Cdh1 interactions in listerial brain tropism. To test the hypothesis that InlA-Cdh1 interactions contribute to the invasion of L. monocytogenes into the brain we paid particular attention to the development of neurological abnormalities Etofibrate in Lmo-InlA-mur-lux and Lmo-EGD-lux infected mice. Interestingly, mice displaying abnormal neurological behaviour such as circling, head tilting or ataxia were very rarely
observed. From a total of 290 mice that were orally challenged with Lmo-InlA-mur-lux and Lmo-EGD-lux (5 × 109 CFU) and monitored for clinical symptoms only 3 animals developed neurological phenotypes (Table 1). These affected mice were identified in the A/J, BALB/cJ, and C57BL/6J inbred strains and occurred with equally low frequency in both Lmo-InlA-mur-lux and Lmo-EGD-lux challenged animals (Table 1). In these cases the appearance of neurological symptoms occurred at 7 d.p.i.. As described above, no major differences in bacterial brain loads were observed between Lmo-InlA-mur-lux and Lmo-EGD-lux challenged mice across the different investigated inbred strains (Figure 3). This was also true for the 7 d.p.i. timepoint when we did observe the above described rare neurological phenotypes in single mice of the C57BL/6J, A/J and BALB/cJ inbred strains but no differences in brain CFU loads among all cohorts of Lmo-InlA-mur-lux and Lmo-EGD-lux infected mice were detected (data not shown).