Ocular and oral swabs were collected twice daily for 30 days DNA

Ocular and oral swabs were collected twice daily for 30 days. DNA was extracted from all swabs and HSV-1 DNA copy numbers were determined. Statistical analysis was performed to compare the DNA copy numbers of the three groups.\n\nRESULTS. There was no significant difference in the HSV-1 DNA copy numbers in the tears or saliva among any of the three treatment groups. The

mean copy numbers +/- SE of mean (SEM) of HSV-1 DNA in tears were 340 +/- 35, selleck chemical 1074 +/- 320, and 630 +/- 51 for groups 1, 2, and 3, and in saliva were 238 +/- 35, 963 +/- 462, and 493 +/- 25, respectively, for groups 1, 2, and 3.\n\nCONCLUSIONS. No correlation was found between HSV-1 shedding and valacyclovir and valacyclovir with aspirin treatment. The HSV-1 DNA copy number was not reduced

by treatment with 500 mg of valacyclovir daily or with a combination of daily valacyclovir (500 mg) plus twice-daily doses of aspirin (350 mg) over 30 days. (Invest Ophthalmol Vis Sci. 2009; 50: 5601-5608) DOI: 10.1167/iovs.09-3729″
“Purpose: To develop a software-based scatter correction method for digital breast tomosynthesis (DBT) imaging and investigate its impact on the image quality of tomosynthesis reconstructions of both phantoms and patients.\n\nMethods: A Monte Carlo (MC) simulation of x-ray scatter, with geometry matching that of the cranio-caudal (CC) view of a DBT clinical prototype, was developed using the Geant4 toolkit and used to generate LDN-193189 maps of the scatter-to-primary ratio (SPR) of a number of homogeneous standard-shaped breasts of varying sizes. Dimension-matched

SPR maps were then deformed and registered to DBT acquisition projections, allowing for the estimation of the primary x-ray signal acquired by the imaging system. Noise filtering of the estimated projections was then performed to reduce the impact of the quantum noise of the x-ray scatter. Three dimensional check details (3D) reconstruction was then performed using the maximum likelihood-expectation maximization (MLEM) method. This process was tested on acquisitions of a heterogeneous 50/50 adipose/glandular tomosynthesis phantom with embedded masses, fibers, and microcalcifications and on acquisitions of patients. The image quality of the reconstructions of the scatter-corrected and uncorrected projections was analyzed by studying the signal-difference-to-noise ratio (SDNR), the integral of the signal in each mass lesion (integrated mass signal, IMS), and the modulation transfer function (MTF).\n\nResults: The reconstructions of the scatter-corrected projections demonstrated superior image quality. The SDNR of masses embedded in a 5 cm thick tomosynthesis phantom improved 60%-66%, while the SDNR of the smallest mass in an 8 cm thick phantom improved by 59% (p < 0.01).

Comments are closed.