“
“For laser ablation plumes that are significantly ionized, Langmuir probes have proved to be a useful tool for measuring the plume shape, ion energy distribution, and electron temperature. Typically in laser ablation plasmas the flow velocity is supersonic, which complicates the interpretation of the current-voltage probe characteristic. this website In this paper we describe
some recent developments on the application of Langmuir probes for laser ablation plume diagnosis. We have investigated the behavior of the probe when it is orientated perpendicular, and parallel, to the plasma flow, and show how an analytical model developed for plasma immersion ion implantation, can quantitatively describe the variation of the ion current with probe bias for the case when the plasma flow is along the probe surface. The ion signal recorded by a probe in the parallel position is proportional to the ion density and the square root of the bias voltage. It is shown that the current varies as m(i)(-1/2) so that by comparing the ion signals from the parallel and perpendicular positions it is possible to estimate the mass of the ions detected. We have also determined the temporal variation of electron temperature. A planar probe oriented parallel to the plasma flow, where the ion current selleckchem due to the plasma flow is eliminated, gives a more reliable measurement of T(e)
(< 0.6 eV). The measured T(e) is consistent with the measured ion current, which is dependent on T(e) when the time taken for an element of plasma to traverse the probe is longer than the time taken for the matrix ion sheath extraction phase.”
“Nanofluidics has a unique property that ionic conductance across a nanometer-sized confined space is strongly affected by the space surface charge CDK phosphorylation density, which can be utilized to construct electrical read-out biosensor. Based on this principle, this work demonstrated a novel protein sensor along with a sandwich signal enhancement approach. Nanoparticles with designed aptamer onside are assembled in a suspended micropore to form a 3-dimensional network of nanometer-sized interstices,
named as nanofluidic crystal hereafter, as the basic sensing unit. Proteins captured by aptamers will change the surface charge density of nanoparticles and thereby can be detected by monitoring the ionic conductance across this nanofluidic crystal. Another aptamer can further enlarge the variations of the surface charge density by forming a sandwich structure (capturing aptamer/protein/signal enhancement aptamer) and the read-out conductance as well. The preliminary experimental results indicated that human alpha-thrombin was successfully detected by the corresponding aptamer modified nanofluidic crystal with the limit of detection of 5 nM (0.18 mu g/ml) and the read-out signal was enhanced up to 3 folds by using another thrombin aptamer.