Bispectrum, which is the Fourier transform of the 3rd-order cumulant, can be applied to nonlinear and non-Gaussian signals to extract nonlinear information.Bispectrum selleck products analysis reveals phase information called quadratic phase coupling (QPC). In the present study, the EMG signals analyzed using bispectrum and the QPCs were determined for all of the datasets, and then these QPCs were fed into the extreme learning machine (ELM) algorithm. The ELM is capable of training and testing data fast and with a high accuracy. The main advantage of ELM over the traditional learning methods is that it is very fast due to its algorithm. In the ELM algorithm, the weights between the input layer and the hidden layer and the hidden layer’s biases are selected randomly, while the weights between the hidden layer and the output layer are determined analytically.
Therefore, considerable time saving is attained in the training stage. Moreover, the performance of the classification method (ELM) was compared with some other machine learning methods, such as support vector machine (SVM), logistic regression (LR), linear discriminant analysis (LDA), and artificial neural network (ANN). The proposed method is satisfactory due to the compared classification methods.2. Material and Methods2.1. DatabaseIn this study, the dataset of the ��EMG physical action data set�� from the machine learning repository (UCI) [11] was used. 3 male and 1 female subjects took part in the experiment (aged 25 to 30 years), who have experienced aggression in scenarios such as physical fighting.
Each subject had to perform 10 normal and 10 aggressive activities. The normal activities were bowing, clapping, handshaking, hugging, jumping, running, seating, standing, walking, and waving, while the aggressive activities were elbowing, Batimastat front kicking, hammering, headering, kneeing, pulling, punching, pushing, side kicking, and slapping. There were 8 electrodes used, which corresponds to 8 input time series, one for each muscle channel (ch1�C8): right bicep (ch1), right tricep (ch2), left bicep (ch3), left tricep (ch4), right thigh (ch5), right hamstring (ch6), left thigh (ch7), and left hamstring (ch8). Each time series contained about 10,000 samples, which were 10s in length.2.2. Bispectrum AnalysisBispectrum analysis reveals the phase relation between components of a signal [12�C14]. Unlike the power spectrum, the bispectrum is capable of extracting extra information from biological signals such as an EMG signal, which is non-Gaussian and nonlinear. The bispectrum is defined as the Fourier transform of the 3rd-order cumulant.