In general, the increase in biomass observed at the end of cultiv

In general, the increase in biomass observed at the end of cultivations (Figure 1A) suggests that these diamines acted as sources of carbon and energy (C) and/or nitrogen (N),

thereby supplementing the basal medium sources (starch and PROFLO®). Cephamycin C production was evaluated at several lysine and alpha-aminoadipic acid concentrations (Figures 2 and 3). Consistent with the literature, high concentrations of exogenous lysine strongly affected cephamycin C production [20, 28]. After adding 14.6 g l-1 of this amino acid, biomass almost doubled (Figure 2A) and cephamycin C production increased about Luminespib mw six fold (Figure 2B) as compared to data from the basal medium. However, residual concentration check details values of this amino acid at 14.6 g l-1 and 18.3 g l-1 of lysine were approximately 25% and Selleck MK0683 35%, respectively. This surplus was not observed at concentrations lower than 11 g l-1. Moreover,

a fivefold global increase in antibiotic volumetric production was obtained between 0 and 11 g l-1 of lysine, whereas biomass increased only 1.5 times. Figure 2 Effect of biomass and cephamycin C with lysine. Biomass (A), cephamycin C concentration (CephC) (B), and specific production (C) obtained from batch cultivations in shaken-flasks of basal medium with no antibiotic-production enhancing compound (control condition) and with lysine (Lys) at different concentration values; the cultures were performed in triplicate. Figure 3 Effect of biomass and cephamycin C with alpha-aminoadipic acid. Biomass (A), cephamycin C concentration (CephC) (B), and specific production (C) obtained from batch cultivations in shaken-flasks of basal medium with no antibiotic-production enhancing compound (control condition) and with alpha-aminoadipic acid (AAA) at different concentration values; the cultures were performed in triplicate.

Adding up to 1.6 g l-1 Selleckchem Docetaxel of alpha-aminoadipic acid did not influence biomass formation, which was in the same order of magnitude as that in the basal medium with no additives. Adding 0.64 g l-1 of alpha-aminoadipic acid to the basal medium resulted in the largest increase in cephamycin C production, four times larger than that obtained with the basal medium. Alpha-aminoadipic acid concentrations higher than 0.64 g l-1 did not promote higher antibiotic volumetric production, in spite of the amino acid having been completely consumed. Henriksen et al. [44] reported that alpha-aminoadipic acid can be metabolized into 6-oxo-piperideine-2-carboxylic acid (OPC), which is secreted into the culture medium during penicillin production by P. chrysogenum. The authors suggested that OPC formation would divert alpha-aminoadipic acid from antibiotic synthesis and lead to lower levels of penicillin production. A similar phenomenon may have occurred in S. clavuligerus.

Comments are closed.