Initially, specific shapes (BIX 1294 clinical trial Triangle or hexagonal) were obtained when lower DMAB molar (0.066 or 0.16 mM, respectively) was added (Figure 7a,b). However, these shapes and the resultant color dramatically changed (brown or orange color) when higher DMAB molar (0.66 and 3.33 mM) was added to the solution. The final position of their maximum absorption bands (UV–vis spectroscopy) was at 410 nm, and the resultant learn more orange color indicates the excitation of the LSPR of spherical shapes (Figure 7d). Figure 7 TEM micrographs that show the formation of
AgNP with different shapes for different DMAB concentrations. (a) Triangle shape with 0.066 mM DMAB. (b) Hexagonal shape with 0.16 mM DMAB. (c) Quasi-spherical shape with 0.66 mM DMAB. (d) Spherical shape with 3.33 mM DMAB. The PAA concentration was 25 mM. Finally, an important aspect observed in this study is the evolution of having the same shapes (rod,
triangle, hexagonal, CX-5461 cost and spherical) for different PAA concentrations when DMAB molar was gradually increased. Figure 8 shows a similar evolution in the resulting shapes as a function of DMAB molar added in the presence of 10 mM PAA. Initially, rod or triangle shapes were observed for lower DMAB molar (0.033 and 0.066 mM), but a change in the shape to hexagonal or spherical were observed when DMAB molar was increased (0.66 or 6.66 mM, respectively). In addition, UV–vis spectroscopy (not shown here) revealed identical spectral changes
in the maximum absorption band in both regions. Firstly, an absorption band is obtained in region 2 that Protein kinase N1 corresponds to rod, triangle, or hexagonal shapes (Figure 8a,b,c, respectively), and secondly, this absorption band was displaced to shorter wavelengths in region 1, appearing as an intense absorption band at 410 nm due to the synthesis of spherical nanoparticles (Figure 8d). Figure 8 TEM micrographs showing the formation of AgNP using 10 mM PAA and different DMAB concentrations. (a) Rod shape with 0.033 mM DMAB. (b) Triangle shape with 0.066 mM DMAB. (c) Hexagonal shape with 0.66 mM DMAB. (d) Spherical shape with 6.66 mM DMAB. Other considerations A relevant aspect of this work is the synthesis of silver reddish nanoparticles in the presence of 2.5 mM PAA because this color is not obtained with lower or higher PAA concentrations. In Figure 9 (left), it is possible to appreciate the evolution of the maximum absorption band (UV–vis spectroscopy) when variable DMAB molar is added to the solution. It is worth noting that the intensity of the peak corresponding to the red solution is broader than in the yellow or orange solution, indicating a considerable increase and aggregation in the number of synthesized silver nanoparticles.